
26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 1/58

The website of Frank Zhao, electrical engineer and DIY hobbyist

Tutorial about USB HID Report Descriptors

This page is from my old website, and it is sort of popular, so I’ve moved it here.

A USB HID report descriptor is one of the descriptors that a USB host can request from a USB device.

HID devices send data to the host using reports, and the descriptor tells the host how to interpret the

data. I will try to show you how to write one of these descriptors.

First, go to this page http://www.usb.org/developers/hidpage/ and �nd the document titled “Device Class

De�nition for HID”. What I will be talking about is essentially paraphrasing the important sections of that

document.

Thanks for visiting! If you appreciate my content, please consider making a donation to a charity.

Thank you ~ Frank

Second, go get the HID descriptor tool from the same page. You’ll want to play with it as you go through

this tutorial. It is an absolute headache to write the HID report descriptors manually (converting between

binary and hex and looking up the meanings of the numbers) so this tool is essential.

What is a USB HID report descriptor?

The HID protocol makes implementation of devices very simple. Devices de�ne their data packets and

then present a “HID descriptor” to the host. The HID descriptor is a hard coded array of bytes that de-

scribe the device’s data packets. This includes: how many packets the device supports, how large are

the packets, and the purpose of each byte and bit in the packet. For example, a keyboard with a calcu-

lator program button can tell the host that the button’s pressed/released state is stored as the 2nd bit

in the 6th byte in data packet number 4 (note: these locations are only illustrative and are device spe-

ci�c). The device typically stores the HID descriptor in ROM and does not need to intrinsically under-

stand or parse the HID descriptor. Some mouse and keyboard hardware in the market today are im-

plemented using only an 8-bit CPU.

– Wikipedia on Human Interface Device

I’m going to try teaching you about USB HID report descriptors by walking you through writing a few.

http://www.usb.org/developers/hidpage/
https://eleccelerator.com/charities/

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 2/58

For a simple starting point, let us make a standard mouse. Just three buttons, and movement on the X

and Y axis. So we want to send data regarding the buttons and movement. It takes one bit to represent

each button, and one byte to represent the movement on one axis as a signed integer. So we can say

that we want the data structure to look something like this

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 Useless Useless Useless Useless Useless Left Button Middle Button Right Button

Byte 1 X Axis Relative Movement as Signed Integer

Byte 2 Y Axis Relative Movement as Signed Integer

And then we can say our data structure in C looks like

So now in our descriptor, our �rst item must describe buttons, three of them

each button status is represented by a bit, 0 or 1

there are three of these bits

send this variable data to the computer

and the �nal result looks like

that will represent the buttons

but what about the �ve useless padding bits?

1
2
3
4
5
6

struct mouse_report_t
{
 uint8_t buttons;
 int8_t x;
 int8_t y;
}

1
2
3

USAGE_PAGE (Button)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 3)

1
2

LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (1)

1
2

REPORT_COUNT (3)
REPORT_SIZE (1)

1 INPUT (Data,Var,Abs)

1
2
3
4
5
6
7
8

USAGE_PAGE (Button)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 3)
LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (1)
REPORT_COUNT (3)
REPORT_SIZE (1)
INPUT (Data,Var,Abs)

?

?

?

?

?

?

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 3/58

now we make the X axis movement

we want it to be a signed integer that takes one byte, so it has a value between -127 and +127 (actually

-128 and +127, but I want to keep things even)

we want it to take an entire byte which is 8 bits

and send it to the computer as a variable relative coordinate

you end up with something like this to represent the X axis movement

How about Y axis? You can try

Which will work, but to save memory, we can do this instead

So all your data will end up looking like

1
2
3

REPORT_COUNT (1)
REPORT_SIZE (5)
INPUT (Cnst,Var,Abs)

1
2

USAGE_PAGE (Generic Desktop)
USAGE (X)

1
2

LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)

1
2

REPORT_SIZE (8)
REPORT_COUNT (1)

1 INPUT (Data,Var,Rel)

1
2
3
4
5
6
7

USAGE_PAGE (Generic Desktop)
USAGE (X)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (1)
INPUT (Data,Var,Rel)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

USAGE_PAGE (Generic Desktop)
USAGE (X)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (1)
INPUT (Data,Var,Rel)
USAGE_PAGE (Generic Desktop)
USAGE (Y)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (1)
INPUT (Data,Var,Rel)

1
2
3
4
5
6
7
8

USAGE_PAGE (Generic Desktop)
USAGE (X)
USAGE (Y)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (2)
INPUT (Data,Var,Rel)

?

?

?

?

?

?

?

?

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 4/58

Ah but we are not done, in order to make the computer know that this is a mouse, we do

So in the end, this is the USB HID report descriptor for a standard mouse

This is actually the example descriptor provided with the USB HID documentation, and you can also �nd

this as an example provided with the HID tool.

Cool, at this point, you will have encountered some concepts that you may have questions about, you

should research the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

USAGE_PAGE (Button)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 3)
LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (1)
REPORT_COUNT (3)
REPORT_SIZE (1)
INPUT (Data,Var,Abs)
REPORT_COUNT (1)
REPORT_SIZE (5)
INPUT (Cnst,Var,Abs)
USAGE_PAGE (Generic Desktop)
USAGE (X)
USAGE (Y)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (2)
INPUT (Data,Var,Rel)

1
2
3
4
5
6
7
8
9
10

USAGE_PAGE (Generic Desktop)
USAGE (Mouse)
COLLECTION (Application)
 USAGE (Pointer)
 COLLECTION (Physical)

 ... What we wrote already goes here

 END COLLECTION
END COLLECTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x02, // USAGE (Mouse)
0xa1, 0x01, // COLLECTION (Application)
0x09, 0x01, // USAGE (Pointer)
0xa1, 0x00, // COLLECTION (Physical)
0x05, 0x09, // USAGE_PAGE (Button)
0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x03, // USAGE_MAXIMUM (Button 3)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x03, // REPORT_COUNT (3)
0x75, 0x01, // REPORT_SIZE (1)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x05, // REPORT_SIZE (5)
0x81, 0x03, // INPUT (Cnst,Var,Abs)
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x30, // USAGE (X)
0x09, 0x31, // USAGE (Y)
0x15, 0x81, // LOGICAL_MINIMUM (-127)
0x25, 0x7f, // LOGICAL_MAXIMUM (127)
0x75, 0x08, // REPORT_SIZE (8)
0x95, 0x02, // REPORT_COUNT (2)
0x81, 0x06, // INPUT (Data,Var,Rel)
0xc0, // END_COLLECTION
0xc0 // END_COLLECTION

?

?

?

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 5/58

Usage Pages

There’s one thing that I think isn’t explained well in the documentation, USAGE, USAGE_PAGE,

USAGE_MINIMUM and USAGE_MAXIMUM. In a descriptor, you �rst set a USAGE_PAGE, and certain

USAGEs are available. In the mouse example, USAGE_PAGE (Generic Desktop) allowed you to use USAGE

(Mouse), and when the usage page was changed to USAGE_PAGE (Button), then the USAGE_MINIMUM

and USAGE_MAXIMUM allowed you to specify the buttons, and before you can use USAGE (X) and USAGE

(Y), the usage page was changed back to USAGE_PAGE (Generic Desktop). The usage page is like a name-

space, changing the usage page a�ects what “usages” are available. Read the documentation called ” HID

Usage Tables” for more info.

Collections

Read the documentation about the o�cial proper use of collections. In my own words, collections can be

used to organize your data, for example, a keyboard may have a built-in touchpad, then the data for the

keyboard should be kept in one application collection while the touchpad data is kept in another. We can

assign an “Report ID” to each collection, which I will show you later.

Hey here’s something you can do, by turning “USAGE (Mouse)” into “USAGE (Gamepad)”, you make the

computer think that it’s a game pad with one joystick and 3 buttons. How about converting a Playstation

2 controller into a USB gamepad? The controller has 16 buttons and two thumb sticks, so we want the

data to look like

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 Button Button Button Button Button Button Button Button

Byte 1 Button Button Button Button Button Button Button Button

Byte 2 Left X Axis as Signed Integer

Byte 3 Left Y Axis as Signed Integer

Byte 4 Right X Axis as Signed Integer

Byte 5 Right Y Axis as Signed Integer

So our data structure looks like

We make the computer understand that it’s a game pad

1
2
3
4
5
6
7
8

struct gamepad_report_t
{
 uint16_t buttons;
 int8_t left_x;
 int8_t left_y;
 int8_t right_x;
 int8_t right_y;
}

?

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 6/58

for the buttons

for the four thumb stick axis

NOTE: Z is used to represent the right stick’s X axis, Rx is used to represent the right stick’s Y axis. This

doesn’t make sense but this is how most existing USB game pads work. I have tested this using

Battle�eld Bad Company 2, it works.

NOTE: Use “absolute” for something like joysticks, but “relative” for things like mouse.

So now you end up with

1
2
3
4
5
6
7
8
9

USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)

 ...

 END COLLECTION
END COLLECTION

1
2
3
4
5
6
7
8

USAGE_PAGE (Button)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 16)
LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (1)
REPORT_COUNT (16)
REPORT_SIZE (1)
INPUT (Data,Var,Abs)

1
2
3
4
5
6
7
8
9
10

USAGE_PAGE (Generic Desktop)
USAGE (X)
USAGE (Y)
USAGE (Z)
USAGE (Rx)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8)
REPORT_COUNT (4)
INPUT (Data,Var,Abs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)
 USAGE_PAGE (Button)
 USAGE_MINIMUM (Button 1)
 USAGE_MAXIMUM (Button 16)
 LOGICAL_MINIMUM (0)
 LOGICAL_MAXIMUM (1)
 REPORT_COUNT (16)
 REPORT_SIZE (1)
 INPUT (Data,Var,Abs)
 USAGE_PAGE (Generic Desktop)
 USAGE (X)
 USAGE (Y)
 USAGE (Z)
 USAGE (Rx)
 LOGICAL_MINIMUM (-127)
 LOGICAL_MAXIMUM (127)
 REPORT_SIZE (8)
 REPORT_COUNT (4)
 INPUT (Data,Var,Abs)
 END COLLECTION
END COLLECTION

?

?

?

?

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 7/58

Hey how about two players? Here’s where collections get handy

�ll in the data areas and you end up with

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)
 REPORT_ID (1)
 ...
 END COLLECTION
END COLLECTION
USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)
 REPORT_ID (2)
 ...
 END COLLECTION
END COLLECTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)
 REPORT_ID (1)
 USAGE_PAGE (Button)
 USAGE_MINIMUM (Button 1)
 USAGE_MAXIMUM (Button 16)
 LOGICAL_MINIMUM (0)
 LOGICAL_MAXIMUM (1)
 REPORT_COUNT (16)
 REPORT_SIZE (1)
 INPUT (Data,Var,Abs)
 USAGE_PAGE (Generic Desktop)
 USAGE (X)
 USAGE (Y)
 USAGE (Z)
 USAGE (Rx)
 LOGICAL_MINIMUM (-127)
 LOGICAL_MAXIMUM (127)
 REPORT_SIZE (8)
 REPORT_COUNT (4)
 INPUT (Data,Var,Abs)
 END COLLECTION
END COLLECTION
USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)
 REPORT_ID (2)
 USAGE_PAGE (Button)
 USAGE_MINIMUM (Button 1)
 USAGE_MAXIMUM (Button 16)
 LOGICAL_MINIMUM (0)
 LOGICAL_MAXIMUM (1)
 REPORT_COUNT (16)
 REPORT_SIZE (1)
 INPUT (Data,Var,Abs)
 USAGE_PAGE (Generic Desktop)
 USAGE (X)
 USAGE (Y)
 USAGE (Z)
 USAGE (Rx)
 LOGICAL_MINIMUM (-127)
 LOGICAL_MAXIMUM (127)
 REPORT_SIZE (8)
 REPORT_COUNT (4)
 INPUT (Data,Var,Abs)
 END COLLECTION
END COLLECTION

?

?

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 8/58

This is really important: You must change your data structure to include the report ID

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 Report ID

Byte 1 Button Button Button Button Button Button Button Button

Byte 2 Button Button Button Button Button Button Button Button

Byte 3 Left X Axis as Signed Integer

Byte 4 Left Y Axis as Signed Integer

Byte 5 Right X Axis as Signed Integer

Byte 6 Right Y Axis as Signed Integer

You must manually set the report ID before you send the data to the computer in order for the com-

puter to understand which player the data belongs to.

You can also use collections and report IDs to make composite devices. So far I’ve shown you the key-

board, mouse, and gamepad. Here’s something that describes a composite device that is a keyboard,

mouse, and two player game pad.

1
2
3
4
5
6
7
8
9

struct multiplayer_gamepad_report_t
{
 uint8_t report_id;
 uint16_t buttons;
 int8_t left_x;
 int8_t left_y;
 int8_t right_x;
 int8_t right_y;
}

1
2
3
4

multiplayer_gamepad_report_t player1_report;
multiplayer_gamepad_report_t player2_report;
player1_report.report_id = 1;
player2_report.report_id = 2;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

USAGE_PAGE (Generic Desktop)
USAGE (Keyboard)
COLLECTION (Application)
 REPORT_ID (1)
 ...
END COLLECTION
USAGE_PAGE (Generic Desktop)
USAGE (Mouse)
COLLECTION (Application)
 USAGE (Pointer)
 COLLECTION (Physical)
 REPORT_ID (2)
 ...
 END COLLECTION
END COLLECTION
USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)

?

?

?

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 9/58

and of course, your data structures with the added report ID.

But since we changed the data structure, your device no-longer supports boot protocol, and hence you

will not need to de�ne a protocol. So make sure you change usbcon�g.h accordingly.

Want to see this in action? Load up this example project into USnooBie and let Windows’s “Devices and

Printers” show you!

Example Project Files

20
21
22
23
24
25
26
27
28
29
30
31

 REPORT_ID (3)
 ...
 END COLLECTION
END COLLECTION
USAGE_PAGE (Generic Desktop)
USAGE (Game Pad)
COLLECTION (Application)
 COLLECTION (Physical)
 REPORT_ID (4)
 ...
 END COLLECTION
END COLLECTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

struct keyboard_report_t
{
 uint8_t report_id;
 uint8_t modifier;
 uint8_t reserved;
 uint8_t keycode[6];
}

struct mouse_report_t
{
 uint8_t report_id;
 uint8_t buttons;
 int8_t x;
 int8_t y;
}

struct gamepad_report_t
{
 uint8_t report_id;
 uint16_t buttons;
 int8_t left_x;
 int8_t left_y;
 int8_t right_x;
 int8_t right_y;
}

?

https://eleccelerator.com/files/hid_tutorial_1.zip

26.11.2021, 17:23 Tutorial about USB HID Report Descriptors | Eleccelerator

https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/ 10/58

This entry was posted in Tutorial and tagged usb on January 1, 2013

[https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/] .

133 thoughts on “Tutorial about USB HID Report Descriptors”

God bless you

Happy Fellow

December 2, 2013 at 7:17 PM

Awesome tutorial…Thanks. CT

CT

December 25, 2013 at 3:20 PM

https://eleccelerator.com/wp-content/uploads/2013/01/hid_tutorial_1_ss1.png
https://eleccelerator.com/category/tutorial/
https://eleccelerator.com/tag/usb/
https://eleccelerator.com/tutorial-about-usb-hid-report-descriptors/

